Karyological Analysis of Some Species of Aphanius (Osteichthyes: Cyprinodontidae) From Anatolia

Muhammet Gaffaroğlu¹, Muradiye Karasu Ayata¹*, Sevgi Ünal² and Mustafa Özkan¹
¹Department of Biology, Faculty of Arts and Sciences, Ahi Evran University, 40100 Kirşehir, Turkey
²Department of Biology, Faculty of Science, Gazi University, 06100 Ankara, Turkey

Abstract.- In this study, chromosomal studies were carried out on four species of the genus Aphanius (Osteichthyes, Cyprinodontidae). Metaphase chromosomes were obtained from kidney cells. The diploid chromosome numbers of Aphanius anatolicae, A. danfordii, A. splendens and A. villwocci were 2n=48, and consisted of three pairs of submetacentric and 21 pairs of subtelocentric chromosomes. The arm number (NF) was 54. Constitutive heterochromatin regions were observed on the centromeres of chromosomes in all four species by using C-banding. Nucleolus organizer regions (NOR) were observed on the short arms of two pairs of chromosomes. It is believed that the data obtained will make a contribution to fish cytogenetics.

Key words: Aphanius, chromosome, C-banding, NOR

INTRODUCTION

The family Cyprinodontidae is distributed throughout the United States, Africa, Southern Europe and Asia. It is represented by a genus in our country (Geldiay and Balık, 2007). The genus Aphanius Nardo, 1827 has 10 species in Anatolia. These species are Aphanius anatolicae, A. asquamatus, A. burdurensis, A. danfordii, A. fasciatus, A. mento, A. splendens, A. sureyanus, A. transgrediens and A. villwocci. All of these species are endemic to our country except for A. fasciatus and A. mento (Fricke et al., 2007).

Fish chromosome studies have been carried out for many years. Chromosome properties of 35 species from a total of 104 species (Fam: Cyprinodontidae) have been reported to date. The diploid chromosome numbers of these species were found to be 48, 50 and 52 (Arai, 2011).

The species of Aphanius living in Anatolia has been studied for molecular phylogeny and historical biogeography (Hrbek et al., 2002), genetic relationships (Bardakçıl et al., 2004) and population structure (Güçlü et al., 2007). Also molecular analysis of the genetic differentiation among Aphanius fasciatus populations has been studied in Tunis (Annabi et al., 2012).

There has been no a detailed study on the cytogenetic features of these species although only haploid chromosome number has been reported in A. anatolicae (Öztan, 1954; Wildekamp, 1993).

The purpose of this study is to reveal the chromosomal features (with Giemsa, Ag-NOR staining and C-banding) of four species (A. anatolicae, A. danfordii, A. splendens and A. villwocci) from Anatolia.

MATERIALS AND METHODS

Eighteen (10 female, eight male) samples of Aphanius danfordii were collected from Sultansazlıği, Develi, Kayseri (38° 22’ N, 35° 21’ E), 17 (11 female, six male) samples of A. anatolicae were collected from Eğirdir Lake, Isparta (37° 51’ N, 30° 50’ E), 10 (four female, six male) samples of A. splendens were collected from Salda Lake, Burdur (37° 31’ N, 29° 43’ E) and 15 (10 female, five male) samples of A. villwocci were collected from Eminekin, Eskişehir (39° 22’ N, 31° 06’ E). These samples were transported live to the laboratory. Metaphase preparations were prepared according to Collares-Pereira (1992) from anterior kidney cells. The technique of Sumner (1972) was used for C-banding of sample preparations whereas the technique of Howell and Black (1980) was used for silver staining. The metaphase preparations were observed and photographed using a Leica DM3000 microscope. Chromosomes were classified according to Levan et al. (1964).
RESULTS

The diploid chromosome numbers of *Aphanius anatolicae*, *A. danfordii*, *A. splendens* and *A. villwocki* were determined to be 2n=48, and chromosome morphologies were three pairs of submetacentric (SM) and 21 pairs of subtelocentric (ST) chromosomes (Fig. 1). NF was found to be 54. The differentiations of sex chromosomes were not observed.

Fig. 1. Giemsa stained metaphase and karyotype of *Aphanius anatolicae* (a-b), *A. danfordii* (c-d), *A. splendens* (e-f) and *A. villwocki* (g-h).
NOR was observed on the telomeric regions of the short arms of two large pairs of subtelocentric chromosomes in each species (Fig. 2a).

By using C-banding, constitutive heterochromatin regions were observed on the centromeres of several chromosomes in all species. Additionally, long arms of some chromosomes had telomeric heterochromatin bands (Fig. 2b).

DISCUSSION

According to Öztan (1954), the haploid chromosome number of *Aphanius anatoliae* was n=24. This study shares the results that we obtained from *A. anatoliae*. Except for this study, no cytogenetic research has been reported on *A. anatoliae*, *A. danfordii*, *A. splendens* and *A. villwocki*.

A. anatoliae, *A. danfordii*, *A. splendens* and *A. villwocki* have the same diploid chromosome number as other species of *Aphanius* that were previously studied. However, their chromosome morphologies are different from these species (Table I).

Table I.- Karyotype studies in the genus *Aphanius*.

<table>
<thead>
<tr>
<th>Species</th>
<th>Diploid chromosome number (2n)</th>
<th>Chromosome morphology</th>
<th>NF</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fasciatus</td>
<td>48</td>
<td>48 ST-A</td>
<td>48</td>
<td>Vitturi et al. (1995)</td>
</tr>
<tr>
<td>A. persicus</td>
<td>48</td>
<td>22 SM+6 ST</td>
<td>70</td>
<td>Esmaeili et al. (2007)</td>
</tr>
<tr>
<td>A. sophiae</td>
<td>48</td>
<td>28 SM+20 ST</td>
<td>76</td>
<td>Esmaeili et al. (2007)</td>
</tr>
<tr>
<td>A. ginaonis</td>
<td>48</td>
<td>14 SM+34 ST</td>
<td>31</td>
<td>Esmaeili et al. (2008a)</td>
</tr>
<tr>
<td>A. dispar</td>
<td>48</td>
<td>16 SM+32 ST</td>
<td>32</td>
<td>Esmaeili et al. (2008a)</td>
</tr>
<tr>
<td>A. isfahensis</td>
<td>48</td>
<td>12 SM+39 ST</td>
<td>30</td>
<td>Esmaeili et al. (2008b)</td>
</tr>
<tr>
<td>A. vladykovi</td>
<td>48</td>
<td>8 SM+40 ST</td>
<td>28</td>
<td>Esmaeili et al. (2009)</td>
</tr>
<tr>
<td>A. anatoliae</td>
<td>48</td>
<td>6 SM+42 ST</td>
<td>54</td>
<td>In this study</td>
</tr>
<tr>
<td>A. danfordii</td>
<td>48</td>
<td>6 SM+42 ST</td>
<td>54</td>
<td>In this study</td>
</tr>
<tr>
<td>A. splendens</td>
<td>48</td>
<td>6 SM+42 ST</td>
<td>54</td>
<td>In this study</td>
</tr>
<tr>
<td>A. villwocki</td>
<td>48</td>
<td>6 SM+42 ST</td>
<td>54</td>
<td>In this study</td>
</tr>
</tbody>
</table>

The karyotype of the *Aphanius* species that has been studied in this research is very similar to *A. vladykovi*, which has eight SM and 40 ST chromosomes (Esmaeili et al., 2009).

It has been reported that diploid chromosome numbers of *A. asquamatus* and *A. mento* collected from inland waters of Turkey was 2n=48. However, there was no information about the chromosome morphologies of these species (Arai, 2011). The similarity of the chromosome number between *Aphanius* species shows that the chromosome number is conservative in this genus. A similar situation has also been reported by other authors (Esmaeili et al., 2009).
It has been shown that some species from the genus *Cyprinodon*, *Garmanella*, *Jordanella*, *Megupsilon* and *Orestias* (Fam: Cyprinodontidae) have 2n=48 (Arai, 2011). On the other hand, some species of the genus *Fundulus*, *Gambusia* and *Poeciliia* (Order: Cyprinodontiformes) also have 2n=48 (Arai, 2011). The findings from *A. anatolicae*, *A. danfordii*, *A. splendens* and *A. villwocki* are similar to these studies.

According to our observations there was no sex chromosome differentiation in *A. anatolicae*, *A. danfordii*, *A. splendens* and *A. villwocki*. In this regard, these species are similar to *A. persicus*, *A. sophiae*, *A. ginaonis*, *A. dispers* *A. isfahanensis* and *A. vladykovii* in which sex chromosomes were unreported (Esmaeili et al., 2007, 2008a,b, 2009).

C-band patterns of fish chromosomes have been studied for many years. Constitutive heterochromatin regions are found at or around centromeres and telomeres using the C-banding method. These regions may also be found within chromosomal arms and sometimes the short arms of acrocentric chromosomes may be entirely heterochromatic (Gaffaroğlu and Yüksel, 2009).

There is no difference in the patterns of heterochromatin regions among the species in this study. The findings that C-bands localize in the centromere and telomere regions of the chromosomes in *A. fasciatus* (Vitturi et al., 1995). *A. anatolicae*, *A. danfordii*, *A. splendens* and *A. villwocki* are similar to this study in terms of including centromeric and telomeric C-bands. However, inter-individual polymorphism of telomeric C-bands that have been reported in *A. fasciatus* (Vitturi et al., 1995) were not observed in this study. Moreover, *A. anatolicae*, *A. danfordii*, *A. splendens* and *A. villwocki* are similar to *Gambusia holbrooki* which has centromeric C-bands (Russo et al., 1999). Similar results have also been obtained by other researchers in cyprinid taxa (Gaffaroğlu and Yüksel, 2009).

NOR numbers and locations have proven useful in fish cytotaxonomy (Amemiya and Gold, 1988). In addition to the diploid chromosome numbers, these properties have also been examined in many fish species (Arai, 2011). In this study, no significant differences in the number and location of the NOR have been observed between the species.

It was concluded that the NOR number of *A. fasciatus* varied between one and eight (Vitturi et al., 1995). While polymorphism of NOR number and localization has been reported in *A. fasciatus*, no polymorphism was observed in the *Aphanius* species in this study. They are similar to *G. holbrooki* regarding the existence of NOR in the short arms of two pairs of chromosomes (Russo et al., 1999).

Chromosome banding studies (especially Ag-NOR and C-banding) have not been found on other *Aphanius* species (except *A. fasciatus*) to date. For this reason, a comparison in this regard cannot be made in detail within the genus.

This study may contribute to cytogenetics of the *Aphanius* species.

ACKNOWLEDGEMENT

This study was supported by TÜBİTAK (No. 110T054 project). The authors thank to Salim Serkan GÜÇLÜ (Süleyman Demirel University, Turkey) for helping in the field and identification of the samples.

REFERENCES

Esmaeili, H.R., Ebrahimi, M., Teimory, A. AND Ansary, T.H., 2008b. First karyological analysis of

(Received 26 May 2014, revised 4 July 2014)