
Pakistan J. Zool., vol. 47(6), pp. 1783-1795, 2015.

A Systematic Approach to Generate Query Model for DNA

Mehwish Nadeem,1 Muhammad Usman Ghani Khan,2 Abad Ali Shah2 and Abdul Nasir2
1Embedded Systems and Enterprise Software Solutions Lab, KICS, UET, Lahore Pakistan.
2University of Engineering and Technology, Lahore, Pakistan

 Abstract.- The Deoxyribonucleic acid (DNA) molecular structure contains lot of important information which
is unique in every human being. Storage, processing and manipulation of DNA’s structural information in a computer
system are still in its infancy. For perfect handling of such type of data, we need a Database Management System. Our
research work described in this paper arose from the observation that existing data models and query languages (and
the database systems realizing them) do not offer sufficient support for the modelling of DNA structure. This is an
attempt to find a good representation for DNA structure and solution to the problem representation of DNA is given in
form of an object oriented data model by using the idea of bar code technology. It is shown that the chemical structure
of DNA can be encoded in bar code which makes storage of DNA structure a lot simpler than existing approaches. In
the end we have proposed a query language (DNA-QL) to store, retrieve and manipulate the biological data. To
achieve these objectives, we intend to propose a data model to model DNA structures in a uniform fashion.
Development of this type of model and query language enables us the development of DBMS for storing biological
structural information of DNA.

Keywords: Growing database, Query Language, Indexed, DNA, Data model, DNA-QL, Constraints, SQL, biological
data, data types, Sub Sequence, Information.

INTRODUCTION

 DNA is an essential part of all living
organisms and biologists are researching on
determining functions of DNA. There is enormous
amount of complex DNA structure data that needs
to be stored efficiently. In current times, new
species are being invented at a very rapid phase
(Mukhtar, 2015). This species invention have
brought an explosion in the amount of molecular
biological data which is available for research
community.
 The existing data modelling techniques are
incapable to model these complex structures. New
data modelling techniques are required for
modelling the DNA structures. Also, exponential
growth of new DNA data from the wet laboratories
is contributing difficulties and complexity to the
data management (such as data modelling, storage,
retrieval and manipulation) and the software
development methods for bioinformatics. To
overcome these issues, some generic object-oriented
data models and DBMS have been developed, such
as Orion (Kim et al., 1990), O2 (Deux et al., 1990)

* Corresponding author: nasirbhutta1@gmail.com
0030-9923/2015/0006-1783 $ 8.00/0
Copyright 2015 Zoological Society of Pakistan

and Iris (Wilkinson et al., 1990).
 The DMBS are unsuitable to use and manage
the non-standard data such as DNA and protein
data. There are two types of non-standard data
inside a DNA structure and they are given below:

 Sequence data
 Core data supports a range of standard data
types including string, date and number. Sometimes,
however, we need an attribute's value to be a type
that is not supported directly. The existing general-
purpose OODBs do not have any standard (built-in)
data types and biological domain-specific functional
operations for biological research (Wang, 2007). In
biological data DNA sequence is non-standard data
type and its corresponding data. It is a common and
current practice to store metadata of each sequence
and its data in a relational DBMS. This practice has
a serious problem that the relational DBMS do not
support approximate and partial sequence matching
queries. There is another approach in practice in
which the sequence data is stored in a flat file and
external indices are created which are processed by

Authors’ Contributions: AAS conceived the project and
supervised the work; MN, performed the experiments,
developed software and tested Codes, AN helped in data
collection and analysis; MUGK wrote the article and helped in
mathematical formulations.

M. NADEEM ET AL. 1784

a special purpose query language (Jagadish et al.,
2003). This approach is the classical file system
approach which lacks in supporting the features of
DBMS technology such as structured query
language,

 Shape data
 The shapes of DNA 3D structure and protein-
DNA complexes are important objects in the study
of the structural biology. These type of data have
been supported in some DBMS, but they are not
considered as a mainstream research topic in the
field of database. There is no query language
available for 3D rigid shape-matching in the
existing DBMS (Jagadish et al., 2003).
 So there is an urgent need of a new object-
oriented data model that can model and capture
different and non-standard characteristics of the
DNA structures and data. Although a few object-
oriented data models have been proposed for
different types of biological data e.g., AceDB
(Durbin and Thierry, 1994), MapBase (Lamb and
Landis, 1991), VODAK (Klas et al., 1994), P/FDM
(Gray et al., 1990), PDBLib (Chang et al., 1994) but
there is no data model available specifically for
DNA structures. Many databanks (flat file systems)
have been developed for DNA, but most of them are
developed as flat file systems and some as relational
databases. Flat files usually manage data by using
strings and some other simple tools that can be
easily mastered, but leave users difficulty to
manipulate data. In addition, it does not support
complex data types, which makes it not be able to
meet the requirements of the management of
complicated biological data. Relational databases
are mature and are successfully applied in many
areas, and one of the major reasons is that the
relational data model is much simpler than others.
However this advantage becomes a big issue in the
life science database applications because of the
lack of support for complex data types.
 To overcome the above mentioned
shortcomings of the existing data models and
databanks and non-availability of data model for the
DNA structures, we propose an object-oriented data
model with built-in data types and built-in
biological domain-specific functional operations and
then propose a Query language to manipulate the

complex DNA structure data. In this proposed data
model, we use an encoding methodology for coding
the chemical structures. The concept of this
encoding methodology is derived from the
commercially available barcode technology. This
paper describes an integrated approach which takes
advantage of both automation technologies such as
commercial bar coding tools as well as existing
molecular structure representation formats for the
description of DNA structure. We demonstrate that
barcodes are one of the most practical methods for
inputting molecular structures into computer
systems in a fully automated and less error-prone
fashion.

MATERIALS AND METHODS

 DNA is a nucleic acid that contains the
genetic instructions used for the development and
functionality of all known living organisms and
some viruses. The main role of DNA molecule is the
long-term storage of information. It consists of two
long polymers of simple units called nucleotides,
with backbones made of sugars and phosphate
groups joined by ester (hydrogen) bonds. These two
strands run in opposite directions to each other and
are therefore anti-parallel (Tseng and Yang, 2013).
Attached to each sugar is one of four types of
molecules called bases. Fig. 1 shows the flat
molecular structure of DNA having four different
bases which are commonly found in DNA: adenine
(A), guanine (G), cytosine (C), and thymine (T). In
their common structural configurations, A and T
form two hydrogen bonds while C and G form three
hydrogen bonds. Because of the specificity of base
pairing, the two strands of DNA are said to be
complementary. So it forms the sequence of these
four bases along the backbone that encodes
information. This information is read using the
genetic code, which specifies the sequence of the
amino acids within proteins.
 The code is read by copying stretches of
DNA into the related nucleic acid RNA, in a process
called transcription (Berg et al., 2002). Within cells,
DNA is organized into structures called
chromosomes. These chromosomes are duplicated
before cells divide, in a process called DNA
replication (Lodish et al., 2000). Eukaryotic

QUERY MODEL FOR DNA STRUCTURE 1785

organisms (animals, plants, fungi etc.) store their
DNA inside the cell nucleus, while in prokaryotes
(bacteria, virus) it is found in the cell's cytoplasm.
Within the chromosomes, chromatin proteins such
as histones compact and organize DNA. These
compact structures guide the interactions between
DNA and other proteins, helping control which parts
of the DNA are transcribed (Butler, 2001). The
structure of DNA is shown in Figure 1.

 Fig. 1. Flat molecular structure of DNA
(www.cnx.org)

Relational vs object oriented databases
 Traditional data models such as relational
database lack of support for complex data types and
built-in biological domain-specific functional
operations which is a big issue for DNA data
application. Hence many scientists switch to the
object-oriented databases since object-oriented
nature of life science data perfectly matches the
architecture of object oriented databases. Table I
summarizes some of the main differences between
relational and object oriented databases on the basis

of certain criteria. From the above comparison of
relational and object oriented data models given in
Table 1, we can conclude that OODM allows a
structurally adequate representation of the data and
can capture the operational semantics of
applications (Beynon-davies, 2004). In bio-
molecular databases for each fundamental class,
dedicated data types are required, that cannot be
easily supported for example in relational database
systems. The numerous, heterogeneous bio-
molecular databases make database integration
techniques necessary, for which object–oriented
database systems are well suited. Standardization
efforts in the field of bio-molecular databases would
be extremely valuable, as the number of
heterogeneous databases is rapidly growing in the
area. An adequate approach to define such a
standard would be based on the object–oriented data
model (Aberer, 1995).

Object oriented data models for bio-molecular
applications
 Data modeling in the bio-molecular
application domain requires flexible and expressive
data models, because of the many complex concepts
that are interconnected in various ways. The
complex structures, semantic constraints, different
data types and derived data of bio-molecular
applications make it necessary to develop an object
oriented data model for these applications. Many
object oriented data models have been made for bio
molecular databases. Some of the object oriented
data models for bio-molecular applications are
described below.

AceDB
 AceDB (Durbin and Thierry, 1994) is a
special purpose object–oriented database system
which was originally designed to meet the needs of
the C. elegans mapping and sequencing project. The
data model supports classes and methods, but does
not support inheritance. The objects can be grouped
in a hierarchical way. As key features the data
model allows to dynamically change the database
schema by adding new attributes, the possibility to
attach freely searchable textual annotations
everywhere. A number of graphical interface tools
support the access to the database system. One of

Anti-Sense Strand Sense Strand

M. NADEEM ET AL. 1786

Table I.- A Comparison of database management systems.

Criteria RDBMS ODBMS

Defining standard SQL2 SQL3/4 (in process) and ODMG-V2.0

Syntax Complexity User friendly syntax; easier to learn complex and difficult to learn due to the

object oriented technology

Efficiency Inefficient when querying or processing

large amount of data, for example, video
stream collections, image collections

Highly efficient for processing large
amount to data including multimedia object
as well

Languages SQL (Structured Query Language) OQL (Object Query Language) as an

object-oriented extension of SQL

Technicality GUI interface are available that makes the

technology available to people for querying
data who are not highly technical

Technical programmer or developer needed
for querying data

object-oriented programming support Poor Inefficient to querying; programmers

spend 1/4 of time to code and map the
program object instances to database

Object database mostly handle complex
data types and support is direct &extensive.

Complex data relationships It makes the data independent from

application, good for querying data with
simple& easy relationships

Objects are a natural way to model; can
maintain and manipulate a wide variety of
data types and relationships

Simplicity of use In relational model the structure of table is

easy to understand & many end-user tools
available

Best for programmers; some SQL access
for end users

Extensibility & content These supports limited set of data types e.g.

integer, String, date, double etc.
Allow users or programmers to define and
use new object data types.

Language maturity Very mature Comparatively mature, but difficult to

understand and use

the tools supports set–oriented, navigational access
to the database. AceDB is also used as a front–end
for the Integrated Genome Database (IGD) (Durbin
and Thierry, 1994) which integrates existing
heterogeneous genome databases and is
implemented on top of a relational DBMS.

MapBase
 MapBase is a system to support the
experimental workflow in a laboratory for
constructing genome maps. MapBase has been built
using an object oriented database management
system ObjectStore (Lamb and Landis, 1991),
which uses C++ as data definition and manipulation
language. Some problems were faced during
development of the project using ObjectStore e.g.,

lack of well- defined data model, lack of schema
evolution, chances of memory leak, insufficient
query facilities etc. So MapBase was built as an
intermediate layer between ObjectStore and the bio-
molecular applications. There are some C++ classes
that are stored in the database of MapBase with 40
additional classes that are used only during
execution of the MapBase server. Some classes
represent specialized scalar types while others
represent more complex objects. Due to powerful
language of C++ MapBase is able to define DNA
sequences of arbitrary length efficiently (Goodman
et al., 1994).

Docking-D
 Docking-D is an object oriented integrated

QUERY MODEL FOR DNA STRUCTURE 1787

Table II.- A comparison of biological database management systems.

Criteria AceDB MapDB Docking-D P/FDM PDBLib

Data Model AceDB C++ VML FDM C++
Query Language Navigational Graphical Navigational VQL Functional MMQL
Query Optimization No No Yes Yes No
Support for schema evolution Yes Yes No No NA

database for storing, retrieving and updating protein
data. The data is taken form flat file and relational
databases like SWISS-PROT (Bairoch and
Boeckmann, 1994) and PDB (Berman et al., 2000)
and etc. Docking-D is implemented using an object
oriented DBMS VODAK (Klas et al., 1994).
VODAK provides new application specific data
modeling features along with the standard features
of object oriented data models. Docking-D
integrates databases in two basic phases: a syntactic
transformation phase and a semantic integration
phase. In the syntactic transformation phase,
heterogeneous data models are mapped to a uniform
data model. The object oriented data model of
VODAK, is used as the canonical data model into
which the external schemas are mapped. In semantic
integration phase, several export schemas are
combined on the basis of uniform data model.
 The integrated schema is generated by
generalization i.e. classes are constructed that are
containers for the union of the instances of different
classes carrying information about the same real
world aspect (Aberer, 1995).

P/FDM
 P/FDM is a functional object oriented data
model for storage and retrieval of protein data
derived from PDB. In the functional object oriented
data model classes can be accessed only by means
of functions. The attributes of objects also
correspond to stored functions. P/FDM is a network
of objects which represent protein at primary,
secondary and tertiary levels. P/FDM is accessed
either by using the logic programming language
PROLOG or by functional query language
DAPLEX (Gray et al., 1990).

PDBLib
 PDBLib is implemented in the object–
oriented programming language C++ and provides

memory resident data structures that can be derived
from PDB database entries. In this way it provides
by means of a C++ class library an abstract interface
to PDB. The classes of the library are divided into
four different groups (Shindyalov et al., 1994). So-
called intrinsic classes describe the macromolecular
structures of protein chains, residues and atoms.
Extensible classes provide a layer that separates the
implementation details of intrinsic classes from the
other parts of the library and the user. Iterative
classes model sets of molecular objects and allow
iterating and filtering over them. I/O classes are
used to load molecular structures from files (Chang
et al., 1994).
 In the above, Table II summarizes some
properties of the existing Data models for bio-
molecular application. We can examine that there is
no data model available specifically for DNA
structures. They do not have any built-in data types
for biological research and built-in biological
domain-specific functional operations for handling
DNA Structure Data.

Fig. 2. Schema of DNA sense strand.

Object oriented data model for DNA structure
 In this section we have proposed an Object
Oriented Data Model for DNA Structure. As
mentioned earlier, DNA is a collection of four

M. NADEEM ET AL. 1788

different types of nucleotides. Figure 2 shows the
general schema of DNA sense strand, where
SSDNA denotes root of sense strand of DNA
system, with n nucleotides i.e., N1, N2, N3…Nn as its
children.

Dnao object
 In the proposed object oriented Data model,
object is referred to as Dnao, and is defined by a 3-
tuple as follows:

Dnao (DS, DO, Constraints) ………..…….. (1)

 The definition of Dnao as described in
Expression (1), where
1. The first part of Dnao is DS that denotes a

DNA structure. DS is defined by a set of
instance-variables/attributes of a Dnao (Sha et
al., 2008).

2. The second part of a Dnao is DO that denotes
DNA Operation, and it is defined by a set of
operations/methods/ functions that operate on
data values assigned to the instance-variables
as defined in DS (Sha et al., 2008).

3. The third part is Constraints which is defined
by a set of constraints on the DS.

 Here we are again referring to Figure 1 which
describes the detailed structure of DNA. It is clear
from the figure that the only difference between the
‘sense’ and ‘anti-sense’ strand is the direction and
sequence of bases. Same Sugar and Phosphate
groups are present on both strands. It is assumed
that if we have sense strand base sequence then we
can extract DNA anti-sense strand base sequence,
RNA strand base sequence and protein amino-acids
sequence by applying the operations present in
Dnao object in Expression (1) which can be
elaborated mathematically in Set theory notation as
follows.

Mathematical modeling
 For mathematical modeling we again refer to
sense strand base sequence presents in Figure 3. The
set Ns contains the sequence of nucleotide presents
on sense strand.

Ns= {Ns1, Ns2, Ns3…. Nsn}… (2)

 The set NAs contains the sequence of
nucleotide presents on Anti-sense strand.

NAs= {NAs1, NAs2, NAs3 ,…. NAsn}… (3)

 If we have only sense strand nucleotide
sequence, then we can extract anti-sense strand
nucleotide sequence. Equation (2) nucleotides Ns1,
Ns2, Ns3 ,…. Nsn can further represented in the
form of sugar, base and phosphate molecules. We
knew that every nucleotide is composed of sugar,
base and phosphate molecules.

b = {A, T, C, and G}… (4)

 The set Ns may also be defined as:

Ns= {(S U b1U P), (S U b2U P), (S U b3U P)... (S U

bn U P)} (5)

 The only difference among the elements of
Ns is base molecules attached with sugar and
phosphate molecules, that can belong to the set b in
equation 4. For simplification in mathematical
modeling we simplify our set of sense strand
nucleotides by taking S and P common and only
considering bases present in the set. Such that the
simplified form of Equation 5 becomes:

Ns = S U P U {b1, b2 , b3…. bn }…..(6)
Ns = S U P U B

 For simplicity we are only considering set B
of bases from equation 6

B= {b1, b2, b3…. bn }…(7)

 By applying complement operation on set B
in equation 7 we obtain set of complement bases B´
that are present in anti-sense strand in set NAs
,which is given below in simplified form.

B´= {b1 ,́ b2 ,́ b3´…. bn´}…(8)

Where b1´, b2 ,́ b3´…. bn´ are complement bases
which also belong to the set b= {A, T, C, G} of
bases described in equation 4. The complement of
the bases A, T, C, and G in sense strand are given in
Table III.

QUERY MODEL FOR DNA STRUCTURE 1789

Table III.- Bases and their complements

Sense-Strand Base Anti-sense strand complement base

A T
T A
C G
G C

 Finally the set of anti-sense strand may be
defined as:

NAs = { (S U b1 ́U P), (S U b2 ́U P) , (S U b3 ́U
P),... (S U bn ́U P) }…(9)

NAs = S U P U B´

 For simplicity we are only considering set B ´
of complement bases from equation 9.

B´= {b1 ,́ b2 ,́ b3´…. bn´}….(10)

 The only difference among the elements of
NAs is complement base molecule, which also
belong to the set b in Equation 4 attached with sugar
and phosphate molecules. As mentioned earlier in
the previous sections that by applying transcription
operation “getDTrancript” (Algorithm given in
Appendix section) on antisense strand sequence B´=
{ b1 ,́ b2´, b3´…. bn´ }…(5) RNA strand sequence
is obtained.

NRna = getDTrancript(B´)

 The base sequence obtained after applying
transcription represented in set notation in equation
6 as follows.

NRna= {b1´ ,́ b2´ ,́ b3´´…. bn´´ }…(6)

 The base sequence b1´´, b2´ ,́ b3´´…. bn´´
belongs from the set b´={A,U,C,G}. Thus for each
C base encountered on DNA anti-sense strand, a G
base is inserted in the RNA; for each G, a C; and for
each T, an A is inserted. However, each A on the
DNA anti-sense strand guides the insertion of the
uracil (U base). Where T is not present in RNA
strand as given in Table IV.
 In this way a DNA strand converts itself into
an RNA sequence by going through an intermediary
step of transcription.

Table IV.- Bases obtained after transcription.

Anti-Sense Strand

Base
RNA strand base after

Transcription

A U
T A
C G
G C

Encoding DNA structure using bar-code technology
 Barcode contains a set of black bars in
varying width separated by white spaces encoding
alphanumeric characters. Traditionally barcodes are
printed on products so that they can be identified
easily and efficiently. An example barcode is given
in Figure 3. We have used the bar-code technology
for the encoding the complex structure of DNA for
its efficient storage and retrieval

 Fig. 3. A typical linear barcode
(www.dataid.com)

 The National Chemical Laboratory, Pune,
employs 2D barcode encoded structures for inhouse
repository management, where barcodes can also be
used for querying the database for similar or
substructures of the query structure (Karthikeyan,
2005. The chemical structures are represented in 2D
(PDF417) barcode representation. For the web-
based applications, an interface is developed which
interprets these barcodes, and export them as
optimized 3D chemical structures. Applications of
this barcode representation also perform some
important functions such as automatic storing and
web-based tracking of molecular samples.
 We use the same idea in encoding DNA’s
sequences but doing some necessary modifications.
Fig 4 shows the mapping of DNA Flat structure to
Deoxyribonucleic acid-code by keeping in
consideration the two types of strands present in
DNA. In our modified encoding format, we use

M. NADEEM ET AL. 1790

numeric digits instead of black and white bars. This
modified barcode (Deoxyribonucleic acid-code)
format is shown in Figure 4.

089 090 SSDNA 091 092 Hydrogen Bond 093

 Fig. 4. Deoxyribonucleic acid-code
format, encoding DNA.

 In Figure 4, the Deoxyribonucleic acid-code
format consists of three parts. Format starts with
code digit 089 and ends with code digit 096. We
have used 3-digit code-words in our
Deoxyribonucleic acid-code ranging from 000 to
999. The code-words from 000 to 088 are reserved
for the structural information of a DNA.

1. The first part of the format starts from the

code 089 which shows start symbol of
Deoxyribonucleic acid-code. Then 090 shows
start symbol of Sense Strand of
DNA(SSDNA). SSDNA ends with the code
091. Here the notation SSDNA represents the
sense strand of DNA which already has been
explained.

2. The second part of the format starts from the
code word 092 which describes the hydrogen
bond which can be either double hydrogen
bond or triple hydrogen bond and ends with
the code word 093.

3. The third part of the format starts from the
code word 094 contains the term ASDNA
which represents the anti-sense strand of
DNA and ends with the code word 095.At the
end 096 represents the End symbol of
Deoxyribonucleic acid-code.

 The hierarchal representaion of DNA
Barcode structure (Fig. 4) is given in Figure 5.
 In Table V we have given the code-words and
their meanings for encoding DNA Structure in the
proposed data model. The encoding scheme that is
proposed above can be extended for the future use.
We have used only the first 100 code-words (Table
V) out of the 1000 code-words. The remaining 900
code-words in Table V are available for encoding
the information about other bio-molecular structures
in the future. This shows extendibility of the
proposed data model.

 Fig. 5. Hierarchal representation of DNA
Barcode Structure.

Table V.- DNA/RNA structure code-words.

Code-
words

Description

089 Start symbol of Deoxyribonucleic acid-code
096 End symbol of Deoxyribonucleic acid-code
090 Start symbol of Sense strand of DNA (SSDNA)
091 End symbol of Sense strand of DNA (SSDNA)
092 Start Symbol of hydrogen bond
093 End Symbol of hydrogen bond
094 Start symbol of anti-sense strand of DNA

(ASDNA)
095 End symbol of anti-sense strand of DNA

(ASDNA)
097 Start symbol of RNA strand after Transcription
098 End symbol of RNA strand after Transcription
000 Double Hydrogen Bond
001 Triple hydrogen bond
002 Phospho-diester bond
003 DeoxyRibo Sugar-Base bond
004 DeoxyRibo Sugar-Phosphate bond
005 Thymine
006 Adenine
007 Guanine
008 Cytosine
009 DeoxyRibo Sugar
010 Phosphate
011 Uracil
096-999 Reserved for Future Use

Constraints
 A constraint is a description of some
condition that must be satisfied by a database state if
it is to reflect its real world semantics accurately. In
order to come up with the efficient querying to
DNA structure data we need a set of constraints in
the core of an object Model. Constraints on a data

QUERY MODEL FOR DNA STRUCTURE 1791

model are of two types, implicit constraints and
explicit constraints. The explicit constraints are
defined by the user while the implicit constraints are
defined by the data model developer (Durbin and
Thierry, 1994). We have defined following (5)
implicit integrity constraints.
i. There are several attributes in the DNA

database schema that store numerical
properties of the data e.g. the molecular
weight (mol.wt) and length attributes
(mol.len) of the class DNA. These attributes
are defined as either floats or integers,
whereas in fact they have much smaller
domains, since none of them can take a
negative value. We can use semantic
constraints to reduce domains of these
attributes as follows:

 a) constrain each d in DNA
 so that mol.wt(d) > 0;
 b) constrain each d in DNA
 so that seq_length(d) > 0;

ii. We can constraint the molecular weight of

DNA since we know that the value must be
either equal or greater than the sum of the
molecular weight (mol.wt) of its constituent
chain. As we know that a particular fragment
of DNA is directly proportional to its length
i.e. its molecular weight (Berg et al., 2002),
so we can say that:

 DNA αmol.wt of chain
 so
 DNA= k × mol.wt of chain
 Where k ≥1
 so
 Constrain each d in DNA to have mol.wt

(d) ≥
 sum(mol.wt(component-Dna(d) as

chain))

iii. The information in DNA is stored as a code

made up of four chemical bases: adenine (A),
guanine (G), cytosine (C), and thymine (T) so
we can enforce this essential biochemical
“rules” about DNA structure using integrity
constraints.

 constrain each b in DNA Sequence
 so that base(b) = {A, T, C, G};

iv. The number of adenine residues is equal to
the number of thymine residues (A=T) and
the number of guanine residues is equal to the
number of cytosine residues (G=C), so we
can enforce this essential biochemical “rules”
about DNA structure using integrity
constraints. Since we know that
b={A,T,C,G}, so firstly we can constraint the
possible size of Nitrogen Base length as:

 constraint each b in DNA
 so that base_length(b)=4;
 Constrain each r in residue

 To have num_residue(sense_strand_
component(r) as chain)

 = num_residue (anti_sense_strand_
component(r) as chain)

v. We can further constrain the possible number

of codons that can be made from the DNA
nucleotides since we know that the
nucleotides in DNA are grouped in triplets, or
3-letter ‘words’, known as codon (Kaestle et
al., 2006). So we can constraint on codon
length as:

 Constrain each c in codon
 So that codon_length(c) = 3

 And the number of possible codons is
recorded accurately by following constraint:

 Constrain each n in nucleotide
 So that num_codon(n) ≤ 64

 Class hierarchy of the DNA structure is given
in Figure 6.
 After purposing the OODM for DNA
structure, we have designed a DNA class- hierarchy
given in Figure 6. This class hierarchy helps to
identify DNA object classes, their internal structure,
and the relationships in which they participate.
 The above DNA structure class hierarchy
describes all structural aspect of DNA structure
data. As Figure 6 identifies the classes involved in
formation of DNA structure, with relationships that
exist between such classes. These relationships
appear in class hierarchy with help of different
notations given in Table V. e.g., the rectangle shows
classes and objects and arrows show relationships
between these classes or objects. The used notations

M. NADEEM ET AL. 1792

and their representations in this hierarchal structure
are given below in the Table V.

 Fig. 6. DNA structure class hierarchy.

Table VI.- Notation & their representation used in DNA

structure class hierarchy

Notation used in DNA structure class hierarchy

Object Class

"is a" relationship

"has a" relationship

Shows description of
particular class or object

 This hierarchal representation provides O-O
paradigm features and implicitly a constrained
description of DNA structure that making it easier to
understand the semantics of DNA Structure. The
instance variables and methods of DNA object are
given in Figure 6.

Object (Dna)
Instance-Variable{
Name;
Classification;
Barcode;
molecular_weight
sequence_length;
Array[] <String>niterogen_base [];
ArrayList<Strand_sequence>dna_strands;
 }
Methods {similarity-search, substructure search, location
search, numberOfSubsequence, barcodeSearch}
Constraints { No.of base in dna_strand= No.of base in
dna_anti_sense_strand,
dna_sequence base[] = {A,T,C,G},
dna_mol_weight≥ sum(mol_weight(each base residue)),
sequence_length&mol_weight>0}

Fig. 7. Class type of DNA structure

RESULTS AND DISCUSSION

Encoding DNA structure-an illustrative example
 Now, we demonstrate our encoding scheme
though an example of a DNA structure and using
our proposed Deoxyribonucleic acid-code format
given in fig. 4 which has been given as follows:
 The first part of the format in Figure 4
describes the Coding Strand of Deoxyribonucleic
acid structure. We are only encoding the sense
strand shaded box in the direction of arrow in Figure
7.
 In the above encoding pattern of Figure 8 we
have encoded in the following pattern such as in the
direction of arrow from upward to downward:
 “Phosphate, Deoxy Ribo Sugar- Phosphate
Bond, Deoxy Ribo Sugar, Deoxy Ribo Sugar-Base
Bond, Adenine, Phosphate, Deoxy Ribo Sugar-
Phosphate Bond, Deoxy Ribo Sugar, Deoxy Ribo
Sugar-Base Bond, Guanine, Phospho-diester Bond”.
 We simplify our encoding of sense strand
nucleotides in Figure 9 by taking some codes
common.

QUERY MODEL FOR DNA STRUCTURE 1793

 Fig. 7. Two nucleotides used for encoding
(www.cnx.org)

Fig. 8. Encoding of SSDNA.

 Referring to Table V we can see that Code
006 represents “Adenine” and Code 007 represents
“Guanine”. By applying complement operation on
Figure 9 referring to Table III we get.
 In the above encoding pattern of Figure 10
we have encoded in the following pattern such as in
the direction of arrow from upward to downward:
 “ Phosphate, Deoxy Ribo Sugar- Phosphate
Bond, Deoxy Ribo Sugar, Deoxy Ribo Sugar-Base
Bond, Thymine, Phosphate, Deoxy Ribo Sugar-
Phosphate Bond, Deoxy Ribo Sugar, Deoxy Ribo
Sugar-Base Bond, Cytosine, Phosphodiester Bond ”.
 By applying transcription operation
“getDTrancript” on antisense strand sequence in
Figure 10 RNA strand sequence is obtained. The
algorithm of operation “getDTrancript” has been
given in Appendix. RNA sequence is obtained after
applying transcription algorithm on ASDNA
sequence by (Lamb and Landis, 1991). Thus for
each C base encountered on the DNA anti-sense
strand, a G base is inserted in the RNA; for each G,
a C; and for each T, an A is inserted. However, each
A on the DNA anti-sense strand guides the insertion
of the Uracil (U base). There is no T present in RNA
strand given in Table IV.

Fig. 9. Extracting common codes.

 Fig. 10. Anti-sense encoding obtained
after complement.

 Fig. 11. RNA sequence obtained after
transcription.

 So we have examined that how DNA strand
converts itself into a RNA sequence by going
through an intermediary step of transcription.
 After proposing an object oriented data model
for DNA structure, we have proposed a Query
language to store, retrieve and manipulate the DNA
structure data. In order to send request and get
results from database user has to make use of query
language to fetch the information to and from
database. Our proposed query language is a domain
specific query language that is designed for DNA
domain.

Syntax of our proposed DNA-QL
 Backus-Naur notation (BNF) is a way to
describe the syntax of the programming languages.
Any sentence which is derived using the rules
specified in BNF notation is said to be syntactically
correct. The rules are called production rules. These
rules are defined with the help of some specific
symbols. The BNF symbols used for our proposed
DNA-QL are given in Table VII.

Anti-Sense Strand Sense Strand

M. NADEEM ET AL. 1794

Table VII.- BNF Symbols used for DNA-QL.

Symbol Description

::= Means “is defined as”
<> (<>) correspond to terminal or non-

terminals, describes portion of the
language but not part of the actual syntax.

[] To enclose optional elements, square
brackets are used.

| Represent the logical OR
{ } The constructs within braces are grouped

together

DNA Select_Query ::=SELECT<asterisk>|
<attribute_list>|<query_operator>[{
<comma><attribute_list> }...]
FROM <table_name>
[WHERE <conditions>]
[ARCHIVE <YES/NO>]
[BARCOMP <barcode>]

 The interpretation of additional clauses is as
follows:
1. The SELECT and FROM Clause: This is

similar to the SELECT command of the SQL
and allows filtering out only the relevant
attributes of those instance variables of an
object which fulfill the given criteria. In the
SELECT clause object methods or path
expressions can be listed, with a comma
between them. The objects in the database
containing the data are instances of the
classes listed in the FROM clause. To each
listed class an object variable is associated: it
is used to refer to object instances of the
related class in the database. According to the
object oriented approach, object attributes are
referred through methods listed in the clauses,
hiding implementation details to users. When
a method is specified in a clause, the related
code is executed.

2. The WHERE Clause: In the WHERE clause
the logical conditions which express the
constraints that must be satisfied by the
objects which will be selected in the database
are specified. Complex constraints may be
made composing simpler conditions, using
the logical connectives AND, OR, NOT. As
in SQL this clause supports a set of arithmetic

operators {=, ≠, <, >, ≤, ≥} for comparisons.
The comparison conditions are also allowed
to use the aggregate functions of the SQL
such as avg, sum, count, etc. The syntax of
the clause will be:

 WHERE<object> operator <condition>
 { AND<object> operator <condition>
 OR<object> operator <condition> }

3. The ARCHIVE Clause: We have proposed an

additional clause named as ARCHIVE that
introduced the new concept of "GROWING
DATABASE" which is so, far a dark area in
the field of databases. This clause enables the
user to store Query results in the form of
tables. With the help of this clause a database
history can be maintained in an efficient way.
This clause provides two options, (YES or
NO). If ARCHIVE clause is set to YES the
user will be able to store Query results as a
table in the database. These resultant tables
can be used for further manipulations in
future.

4. MinMax: These operators are used for
determining percentage (%) similarity of the
queried structure e.g. if min is 85 and max is
95 then it means that the structure should b at
least 85% and at most 95% similar to the
structure in query.

5. The BARCOMP Clause: This clause is used
to find similar DNA structure by simple
comparison of stored barcodes of the DNA
structures.

 Our proposed DNA-QL provides some
additional operators based on DNA domain, to
which user can conveniently and easily send queries
without any extra learning. Algorithms for these
operators (e.g., Location, length of strand, sub
sequence etc) are given in appendix section.

CONCLUSION

 The exiting practice is to handle the DNA
data does not offer adequate and powerful support
of the data storage, retrieval and manipulation like a
DBMS. Also, the DNA structures are highly
complex structures, and the existing database
technology is unsuitable to handle them. To

QUERY MODEL FOR DNA STRUCTURE 1795

overcome the drawbacks of the existing database
and databanks technology in handling DNA
structures and data, we have proposed an object-
oriented data model for DNA structures. The
novelty of this data model is that it captures
complex DNA structures in a simple fashion using
the concept of barcode technology; and it provides a
basis to answer complex queries of biologists. This
data model also has provision for its extension for
modeling and handling of the other biological data.
In this paper, we have also given outlines of the
DNA query language (DNA-QL) as an extension of
SQL. In DNA-QL, we have introduced some new
operators which are needed to query DNA data and
structures in meaningful and simple manner.
 The supplementary Material `Appendix’ is
available
http://www.zsp.com.pk/supplementary%20mater
ial/1783-1795%20(37)%20APPENDIX.pdf

REFERENCES

ABERER, K., 1995. The use of object–oriented datamodels for

biomolecular databases. GMD-IPSI, Dolivostr. 15,
64293 Darmstadt, Germany

ALBERTS, R., JOHNSON, A., LEWIS, J., RAFF, M.,
ROBERTS, K. AND WALTER, P., 2002. Molecular
biology of the cell. 4th edition. Garland Science. New
York ISBN-10: 0-8153-3218-1ISBN-10: 0-8153-4072-9

BAIROCH, A. AND BOECKMANN, B., 1994. The SWISS-
PROT protein sequence data bank: Current Status, Nucl.
Acids Res., 22: 3578-3580.

BERG, J., TYMOCZKO, J. AND STRYER, L., 2002
Biochemistry. W. H. Freeman and Company ISBN 0-
7167-4955-6

BERMAN, H.M., WESTBROOK, J., FENG, Z., GILLILAND,
G., BHAT, T.N., WEISSIG, H., SHINDYALOV, I.N.
AND BOURNE, P.E., 2000. The protein data bank,
Nucl. Acids Res., 28: 235-242.

BUTLER, J.M., 2001. Forensic DNA typing. Elsevier. ISBN
978-0-12-147951-0. OCLC 223032110 45406517.pp.
14–15.

BEYNON-DAVIES, P., 2004. Database systems. 3rd Edition
Palgrave, Basingstoke, UK.ISBN 1-4039-1601-2

CHANG, W., SHINDYALOV, I.N., PU, C. AND BOURNE,
P.E., 1994. Design and application of PDBlib, A C++
Macromolecular Class Library CABIOS.

DEUX, O., 1990. The story of O2. IEEE Trans. Know. Data.
Engin., 2: 91-108.

DURBIN, R. AND THIERRY-MIEG, J., 1994. The ACeDB
genome database. In: Computational methods in
genome research. Springer US, pp. 45-55.

GOODMAN, N., ROZEN, S. AND STEIN, L., 1994. Building
a Laboratory Information System around a C++–Based
Object–Oriented DBMS. Proceedings of the 20th VLDB
Conference, Santiago, Chile.

GRAY, P.M.D., PATON, N.W., KEMP, G.J.L. AND
FOTHERGILL, J.E., 1990. An object–oriented database
for protein structure analysis. Protein Engin., 3: 235–
243.

HIGGS, P. G. AND ATTWOOD, T. K., 2009. Bioinformatics
and molecular evolution. John Wiley

JAGADISH, H.V., OLKEN, F., RASCHID, L., WOOLEY, J.
C., ECKMAN, B., RUSSELL, L., 2003. Report on
Workshop on Data Management Technology for
Molecular and Cell Biology.

KAESTLE, F., KITTLES, R., ROTH, A. AND UNGVARSKY,
E., 2006. Database limitations on the evidence.

KARTHIKEYAN, M., 2005. Encoding and Decoding
Graphical Chemical Structures as Two-Dimensional
(PDF417) Barcodes. J. Chem. Inf. Model.; 45:572–580.

KIM, W., GARZA, J.F., BALLOU, N. AND WOELK, D.,
1990. Architecture of the orion next-generation
database system. IEEE Trans. Know. Data Engin., 2:
109-124.

KLAS, W., FANKHAUSER, P., MUTH, P., RAKOW, T. AND
NEUHOLD, E.J., 1994. Database Integration using the
Open Object-Oriented Database System VODAK.

LAMB, C., LANDIS, G., ORENSTEIN, J. AND WEINREB,
D., 1991. The object store database system. Commun.
ACM, 34: 32–39.

LODISH, H., BERK, A., ZIPURSKY, SL., MATSUDAIRA,
P., BALTIMORE, D. AND DARNELL, J., 2000.
Molecular cell biology 4th edition. W. H. Freeman,
New York.

MUKHTAR, M. K. 2015. Two new species of the genus
Cheiracanthium CL Koch (Araneae: Eutichuridae) from
Punjab, Pakistan. Pakistan J. Zool., 47: 467-472.

SHINDYALOV, I. N., CHANG, W., PU, C. AND BOURNE,
P.E., 1994. Macromolecular query language (MMQL):
prototype data model and implementation. Protein
Engin., 7: 1311-1322.

SHA, A., KHALID, H., AHSAN, S. AND NASEER, I., 2008.
Query model for object-oriented data model of protein
structure. The International Conference on
Bioinformatics and Computational Biology
(BIOCOMP'08) July 14-17 Am. Crim. Law Rev.,
43:17-23.

TSENG, C.C. AND YANG, X., 2013. DNA structure: What is
DNA? In: Learning basic genetics with interactive
computer programs. Springer, New York, pp. 19-35.

WILKINSON, K., LYNGBAEK, P. AND HASAN, W., 1990.
The Iris Architecture and Implementation. IEEE Trans.
Know. Data Engin., 2: 63-75.

WANG, Y., 2007. Protein structure data management system.
Dissertation, Georgia State University.

M. NADEEM ET AL. 1796

(Received 24 April 2014, revised 4 June 2015)

